Table 5. Hydrogen-bonding geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	D...A	D-H. \cdot A
N101-H101 . ${ }^{\text {O }}$ 212 ${ }^{\text {i }}$	0.883 (8)	2.784 (10)	163.7
N103-H103 . . O31 ${ }^{\text {ii }}$	1.122 (12)	2.781 (16)	161.6
N201-H201. . O112iii	0.855 (8)	2.794 (10)	169.0
N203-H203. . O22	1.060 (12)	2.782 (16)	162.2

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, z$.
Since crystals of lumiflavinium nitrate degrade rapidly, the crystal selected for X-ray intensity data collection was sealed in a capillary with mother liquor to prevent degradation. Corrections for background, decay, Lorentz and polarization factors, and absorption effects, were included in the data reduction. The structure was solved by direct methods with the program SIR92 (Altomare, Cascarano, Giacovazzo \& Guagliardi, 1994), and resulted in reliable positions for all the non-H atoms. The initial model was refined with NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). Two H atoms could not be located; they belong to two HNO_{3} moieties. PLATON (Spek, 1990) was used for the generation of the Crystallographic Information File and geometry analysis.
Data collection: CAD-4 EXPRESS. Cell refinement: CAD4 EXPRESS. Data reduction: NRCVAX.

JW thanks the National Foundation for Scientific Research (FNRS Belgium) for his Research Assistant position. The authors acknowledge IBM Belgium and the Facultes Notre Dame de la Paix for the use of the Namur Scientific Computing Facilities. They are also indebted to Synthelabo Recherche (centre de RueilParis) for preparing lumiflavine.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: DU1097). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Abe, M. \& Kyogoku, K. (1987). Spectrochim. Acta, 8, 1027-1037. Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1994). J. Appl. Cryst. 27, 435.

Ertan, A. \& Koziol, J. (1993). Acta Cryst. C49, 2179-2181.
Gabe, E., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. (1989). J. Appl. Cryst. 22, 384-387.
Ghisla, S. \& Massey, V. (1989). Eur. J. Biochem. 181, 1-17.
Nishimoto, K., Fukunaga, H. \& Yagi, K. (1986). J. Biochem. 100, 1647-1653.
Norrestam, R. \& Stensland, B. (1972). Acta Cryst. B28, 440-447.
Spek, A. (1990). Acta Cryst. A46, C-31.
Tanaka, N., Ashida, T., Sasada, Y. \& Kakudo, M. (1969). Bull. Chem. Soc. Jpn, 42, 1546-1554.
Trus, B. \& Fritchie, C. (1969). Acta Cryst. B25, 1911-1917.
Wouters, J., Moureau, F., Perpete, P., Norberg, B., Evrard, G. \& Durant, F. (1994). J. Chem. Crystallogr. 24, 607-614.
Wouters, J., Perpete, P., Dory, M. \& Durant, F. (1992). Poster presented at the Fifth SCF User's Group Meeting, Namur, Belgium.
Yoneda, F., Sakuma, Y., Ichiba, M. \& Shinomura, K. (1976). J. Am. Chem. Soc. 98, 144A.

Acta Cryst. (1995). C51, 1227-1229

(\boldsymbol{E})-4-Nitrobenzaldehyde Phenylhydrazone

Ramasamy Velavan and Kandasamy Sivakumar
Department of Physics, Anna University, Madras
600 025, India
Munisamy Anbu
Department of Chemistry, Anna University, Madras 600 025, India
(Received 22 August 1994; accepted 2 November 1994)

Abstract

The title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$, is found to be in the E conformation and the crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The dihedral angle between the planes of the phenyl and nitrophenyl rings is $15.55(9)^{\circ}$.

Comment

In recent years the need to discover organic materials with large quadratic non-linear coefficients, for application in optical signal processing, has been recognized (Chemla \& Zyss, 1987). The crystal structure determination of the title compound (1) forms part of our work on the discovery and properties of

(1)
non-linear optical organic materials. This compound shows nearly half the second harmonic generating capacity of urea (Mini, 1991). The N-O distances in the nitro group are asymmetrical [$\mathrm{N} 16-\mathrm{O} 171.233$ (4) and $\mathrm{N} 16-\mathrm{O} 181.219$ (4) \AA]. The $\mathrm{C} 6-\mathrm{N} 7$ distance, 1.382 (4) \AA, is well below the single-bond distance indicating electron delocalization over the region of the molecule [cf. other phenylhydrazone derivatives (Willey \& Drew, 1985) that have different substituents at C9]. The nitro group is tilted by $7.4(2)^{\circ}$ with respect to the plane of the phenyl ring. The structural conformation of the molecule is the E isomer, the most common conformation for benzaldehyde derivatives. Presumably, this conformation minimizes steric hindrance between the bulky phenyl and anilino groups lying across the $\mathrm{C}-\mathrm{N}$ double bond [C9=N8 1.290 (4) \AA]. The packing of the molecules in the unit cell is governed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between N7 and O18($-x-1 / 2,-y-1, z+1 / 2$) [N7H7 1.02 (4), N $7 \cdots$ O18 3.018 (4), H7 $\cdots \mathrm{O} 182.00$ (4) \AA and N7-H7‥O18 $\left.169(3)^{\circ}\right]$. Vickery, Willey \& Drew
(1985) have studied the structure of various phenylhydrazone derivatives and established that the NH group participates in hydrogen bonding whenever possible, either intermolecular or intramolecular. The present study confirms this view.

Fig. 1. Structure of the title compound showing 50% probability displacement ellipsoids.

Experimental

Single crystals of the title compound were obtained from methanol solution by slow evaporation at room temperature

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=241.25$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=6.059(1) \AA$
$b=11.598(2) \AA$
$c=17.253$ (4) \AA
$V=1212.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.322 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54180 \AA$
Cell parameters from 25 reflections
$\theta=25-40^{\circ}$
$\mu=0.760 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.5 \times 0.3 \times 0.3 \mathrm{~mm}$
Dark red

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta_{\text {max }}=64.88^{\circ}$
$h=0 \rightarrow 7$
$\omega / 2 \theta$ scans
Absorption correction: none
1198 measured reflections
1198 independent reflections
1087 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0368$
$w R\left(F^{2}\right)=0.1074$
$S=1.099$
1198 reflections
208 parameters
All H -atom parameters
refined
$=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0643 P)^{2}\right.$ $+0.1528 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.087$
$\Delta \rho_{\text {max }}=0.100 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.111 \mathrm{e} \AA^{-3}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
C1	0.5723 (5)	-0.2300 (3)	-0.2271 (2)	0.0755 (8)
C2	0.7647 (6)	-0.1775 (3)	-0.2015 (2)	0.0909 (10)
C3	0.8446 (6)	-0.1960 (3)	-0.1280 (2)	0.0945 (10)
C4	0.7324 (6)	-0.2702 (3)	-0.0797 (2)	0.0907 (10)
C5	0.5433 (5)	-0.3241 (3)	-0.1041 (2)	0.0790 (8)
C6	0.4619 (4)	-0.3048 (2)	-0.1782 (2)	0.0670 (7)
N7	0.2713 (4)	-0.3617 (3)	-0.2001 (1)	0.0822 (7)
N8	0.1912 (4)	-0.3559 (2)	-0.2734 (1)	0.0711 (6)
C9	0.0005 (5)	-0.4027 (3)	-0.2841 (2)	0.0724 (7)
C10	-0.1000 (5)	-0.4069 (2)	-0.3601 (2)	0.0678 (7)
C11	0.0070 (5)	-0.3645 (2)	-0.4269 (2)	0.0722 (7)
C12	-0.0906 (5)	-0.3737 (3)	-0.4983 (2)	0.0751 (8)
C13	-0.2965 (5)	-0.4247 (3)	-0.5038 (2)	0.0755 (8)
C14	-0.4054 (6)	-0.4658 (3)	-0.4397 (2)	0.0831 (9)
C 15	-0.3058 (5)	-0.4573 (3)	-0.3685 (2)	0.0789 (8)
N16	-0.4001 (5)	-0.4353 (2)	-0.5795 (2)	0.0911 (8)
017	-0.2933 (5)	-0.4091 (3)	-0.6377 (2)	0.1136 (9)
018	-0.5900 (5)	-0.4696 (3)	-0.5831 (2)	0.1270 (11)

Table 2. Geometric parameters (\AA, ${ }^{\circ}$)

C1-C6	1.382 (4)	C10-C15	1.385 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.388 (4)	C10-C11	1.411 (4)
C2-C3	1.374 (5)	$\mathrm{Cl1}-\mathrm{C} 12$	1.370 (4)
C3-C4	1.378 (5)	C12-C13	1.384 (4)
C4-C5	1.371 (5)	C13-C14	1.373 (4)
C5-C6	1.389 (4)	C13-N16	1.454 (4)
C6-N7	1.382 (4)	$\mathrm{C14-C15}$	1.373 (5)
N7-N8	1.356 (3)	N16-018	1.219 (4)
N8-C9	1.290 (4)	N16-017	1.233 (4)
C9-- ${ }^{\text {C10 }}$	1.448 (4)		
C6-Cl-C2	119.2 (3)	C15-- ${ }^{\text {C10-C9 }}$	119.2 (3)
C3-C2-C1	121.4 (4)	C11-C10-C9	122.3 (3)
C2-C3-C4	118.8 (3)	C12-C11-C10	120.6 (3)
C5-C4-C3	120.7 (3)	C11-C12-C13	119.0 (3)
C4-C5--C6	120.4 (3)	C14-C13-C12	121.7 (3)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{N} 7$	122.5 (3)	C14-C13-N16	119.1 (3)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	119.4 (3)	C12-C13-N16	119.2 (3)
$\mathrm{N} 7-\mathrm{C} 6-\mathrm{C} 5$	118.1 (3)	C13--C14-C15	119.0 (3)
N8-N7-C6	122.0 (2)	$\mathrm{Cl}^{-} \mathrm{Cl5}-\mathrm{C} 10$	121.3 (3)
C9-N8-N7	115.7 (2)	O18-N16-017	122.4 (3)
$\mathrm{N} 8-\mathrm{C}-\mathrm{Cl} 10$	121.4 (3)	O18-N16-Cl3	118.7 (3)
C15--C10-C11	118.4 (3)	O17-N16-C13	118.9 (3)

All the H atoms were located from difference Fourier maps and refined isotropically. PARST (Nardelli, 1983) was used for geometrical calculations.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: author's own program. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93.

The authors thank Dr Fun Hoong Kun, School of Physics, Universiti Sains Malaysia, for moleculargraphics facilities.

[^0]
References

Chemla, D. S. \& Zyss, J. (1987). Editors. Non-linear Optical Properties of Organic Molecules and Crystals, Vol. I. Orlando: Academic Press.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mini, K. J. (1991). MSc dissertation, Anna Univ., Madras, India.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
Vickery, B., Willey, G. R. \& Drew, M. G. B. (1985). Acta Cryst. C41, 1072-1075.
Willey, G. R. \& Drew, M. G. B. (1985). Acta Cryst. C41, 589-594.

Acta Cryst. (1995). C51, 1229-1231

A Mesogenic Perfluorinated Compound

Phlippe Kromm, Hassan Allouchi, Jean-Pierre Bdeau and Michel Cotrait

Laboratoire de Cristallographie, Université Bordeaux I, 351 Cours de la Libération, F-33405 Talence CEDEX, France

Huu Tink Nguyen

Centre de Recherche Paul Pascal, Av. A. Schweitzer, F-33600 Pessac CEDEX, France
(Received 4 July 1994; accepted 23 November 1994)

Abstract

The structure of 4-(2,2,3,3,4,4,4-heptafluorobutyloxycarbonyl)]phenyl 4-undecyloxybenzoate, $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~F}_{7} \mathrm{O}_{5}$, adopts a slightly bent conformation. Molecules are aligned in the same direction and orientation as in an S_{A} smectic-like molecular arrangement. It is, therefore, a precursor of a ferroelectric phase.

Comment

Liquid crystals play an important role in a wide variety of electro-optical display devices and their development is currently of great interest (Kaneko, 1987). Recently, liquid crystals incorporating F atoms have shown very interesting results for such displays (Schad \& Kelly, 1985; Goto, Ogawa, Sawada \& Sugimori, 1991). There are numerous ways to introduce fluorine into liquid crystals; one is discussed in a recent paper regarding the 4-cyanophenyl 4-perfluoroheptylbenzoate with a cyano group on one side and a perfluoroheptyl chain on the
other (Kromm, Bideau, Cotrait, Destrade \& Nguyen, 1994), which gives an $S_{A_{2}}$-like arrangement. For the present compound, structural characterization shows that the material has a monolayer S_{A} phase. In order to clarify the precise relationship between the S_{A} structure and the molecular interactions, we solved the crystal structure of the present compound (1).

(1)

The molecule can be analysed as consisting of three parts, the alkoxy chain, the central core and the semiperfluorinated chain. The title compound crystallizes in the $P 1$ space group with two independent molecules in the cell, (I) and (II). The atom labelling, along with the molecular conformations, are given in a SNOOPI drawing (Davies, 1983) (Fig. 1). Both alkoxy chains (O30-C41) for (I) and (O80-C91) for (II) are planar with torsion angles differing by less than 5° from 180°. Both semi-perfluorinated chains O18-C22 for (I) and O68-C72 for (II) are fully extended. The only conformational differences between molecules (I) and (II) are relative to the central core: $\mathrm{C} 1-\mathrm{O} 18$ and $\mathrm{C} 51-\mathrm{O} 68$ for (I) and (II), respectively. The torsion angles which differentiate molecules are as follows: C3-C4-C7-09 -10.3(12), C53-C54-C57-O59-167.2(7), C7-O9- $\mathrm{C} 10-\mathrm{C} 11-121.0(9)$ and $\mathrm{C} 57-\mathrm{O} 9-\mathrm{C} 60-$ C61-71.1 (11) ${ }^{\circ}$.

Both molecules are bent at the homologous C16 and C66 level: C(22) $\cdots \mathrm{C}(16) \cdots \mathrm{C}(41)$ and $\mathrm{C}(72) \cdots \mathrm{C}(66) \cdots$ $\mathrm{C}(91)$ are 131.7 and 127.8°, respectively. The two phenyl rings of the cores make angles of 52.5 and

Fig. 1. View of $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~F}_{7} \mathrm{O}_{5}$ showing the labelling of the non- $\overline{\mathrm{H}}$ atoms. Displacement ellipsoids are shown at 50% probability levels (the projection of the structure is along the z axis).

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: LI1127). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

